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ABSTRACT
A new approach to identify clusters as trees of an optimum-
path forest has been presented. We are extending the method
for large datasets with application to automatic GM/WM clas-
sification in MR-T1 images of the brain. The method is com-
puted for a few randomly selected voxels, such that GM and
WM define two optimum-path trees. The remaining voxels
are classified incrementally, by identifying which tree would
contain each voxel if it were part of the forest. Our method
produces accurate results on phantom and real images, simi-
larly to those obtained by the state-of-the-art, does not rely on
templates, and takes less than 1.5 minute on modern PCs.

Index Terms— Medical image processing, image forest-
ing transform, improved mean-shift algorithm, graph-cut
measures, MR image segmentation.

1. INTRODUCTION

We have presented an approach for data clustering based on
optimum-path forest [1]. The samples are nodes of a graph,
whose arcs connect k-nearest neighbors in the feature space.
The graph is weighted on the nodes by density values, form-
ing a discrete probability density function (pdf), which is
computed from the distances (arc weights) between the fea-
ture vectors of the adjacent samples. The best k is found by
minimizing a graph-cut measure and the maximization of a
path-value function outputs an optimum-path forest (OPF),
where each tree (cluster) is rooted at a maximum of the pdf.
The method is more general and improves the mean-shift
algorithm [2] for data clustering in robustness and number
of irrelevant clusters. It also extends the image foresting
transform [3] from the image domain to the feature space.
Graph-based clustering methods for image analysis usu-

ally define the arcs between pixels within a small adjacency
radius [1, 2, 4, 5], due to the large number of samples (even
for 2D images). The present work extends the OPF clustering
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to large datasets with no adjacency constraints in the image
domain. The impact of this result becomes evident when we
apply the method for tissue classification in MR-T1 images of
the brain. It takes less than 1.5 minute on modern PCs with
no need for templates and no user intervention. For a volume
containing only gray matter (GM) and white matter (WM)
voxels, a subset of voxels (typically less than 500 samples)
is randomly selected in the brain to form the k-nn graph and
an optimum-path forest is computed with only two trees, each
representing a cluster of GM or WM. The remaining voxels
are classified incrementally, by identifying which tree would
contain each voxel if it were part of the forest.
The brain (GM + WM) can be isolated in MR-T1 images

either interactively [6] or automatically [7], within a few sec-
onds, and with no need of templates and adjustment of param-
eters. In these approaches, the CSF is eliminated by removing
voxels below the Otsu’s threshold computed on the original
image. Other approaches exist for MR-image segmentation
of the brain, including GM and WM separation. Despite of
the known criticism [8, 9], most of them relies on templates
to obtain at least prior information [10–12]. Some of them
take several minutes to separate GM and WM [13, 14] and
others require multiple imaging modalities [15, 16].
The proposed approach can obtain similar accuracies

from a single modality. The next sections present a review
on the OPF clustering, its extension to large datasets, its
application to GM/WM classification, the experiments with
phantoms and real images, results and conclusions.

2. OPTIMUM PATH FOREST CLUSTERING

Let N be a dataset such that for every sample s ∈ N there
is a feature vector �v(s). Let d(s, t) be the distance between s
and t in the feature space (e.g., d(s, t) = ‖�v(t)− �v(s)‖). The
fundamental problem in data clustering is to identify natural
groups in N . In GM/WM classification, there are two groups
(possibly with overlap) and a distinct label must be assigned
to the samples of each group.
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A graph (N ,A) is defined such that the arcs (s, t) ∈ A
connect k-nearest neighbors in the feature space. The arcs are
weighted by d(s, t) and the nodes s ∈ N are weighted by a
density value ρ(s).

ρ(s) =
1√

2πσ2|A(s)|
∑

∀t∈A(s)

exp

(−d2(s, t)

2σ2

)
(1)

where |A(s)| = k, σ =
df

3 , and df is the maximum arc
weight in (N ,A). This parameter choice considers all nodes
for density computation, since a Gaussian function covers
most samples within d(s, t) ∈ [0, 3σ]. The traditional method
to estimate a probability density function (pdf) is by Parzen-
window. Equation 1 can provide a Parzen-window estimation
based on isotropic Gaussian kernel when we define the arcs
by (s, t) ∈ A if d(s, t) ≤ df . This choice, however, presents
problems with the differences in scale and sample concen-
tration. Solutions for this problem lead to adaptive choices
of df depending on the region of the feature space [17]. By
taking into account the k-nearest neighbors, we are handling
different concentrations and reducing the scale problem to
the one of finding the best value of k within [1, kmax], for
1 ≥ kmax ≤ |N |. Our solution considers the minimum graph
cut provided by the clustering results for k ∈ [1, kmax], ac-
cording to a measure C(k) suggested by Shi and Malik [4].

C(k) =
c∑

i=1

W ′
i

Wi + W ′
i

, (2)

Wi =
∑

∀(s,t)∈A|L(s)=L(t)=i

1

d(s, t)
, (3)

W ′
i =

∑
∀(s,t)∈A|L(s)=i,L(t) �=i

1

d(s, t)
, (4)

where L(t) is the label of sample t, W ′
i uses all arc weights

between cluster i and other clusters, and Wi uses all arc
weights within cluster i = 1, 2, . . . , c. Figure 1a shows an
example with |N | = 340 samples, which form a few clusters
with different sample concentrations in a 2D feature space.
Depending on the scale, there are one, three, four, or five
natural groups. If kmax ≥ 150, then the minimum cut will
occur when all samples are grouped into a single cluster. The
minimum cut for kmax = 100 identifies four clusters with
a best k = 37 (Figure 1b), and by limiting the search to
kmax = 30, the minimum cut identifies five clusters with a
best k = 29 (Figure 1c). The clustering results are obtained
by extending the image foresting transform [3] (IFT) from
the image domain to the feature space, as follows. A path πt

is a sequence of adjacent samples starting from a root R(t)
and ending at a sample t, being πt = 〈t〉 a trivial path and
πs · 〈s, t〉 the concatenation of πs and arc (s, t). Among all
possible paths πt with roots on the maxima of the pdf, we
wish to find a path whose the lowest density value along it is
maximum. Each maximum should then define an influence

(a)

(b) (c)

Fig. 1. (a) Feature space with distinct sample concentration
per cluster. We can identify different cluster numbers depend-
ing on the scale. Reasonable solutions are (b) four and (c) five
clusters, where two touch each other.

zone (cluster) by selecting the samples that are more strongly
connected to it, according to this definition, than to any other
maximum. More formally, we wish to maximize f(πt) for all
t ∈ N where

f(〈t〉) =

{
ρ(t) if t ∈ R
ρ(t) − δ otherwise

f(〈πs · 〈s, t〉〉) = min{f(πs), ρ(t)} (5)

for δ = min∀(s,t)∈A|ρ(t) �=ρ(s) |ρ(t)−ρ(s)| andR being a root
set with one element for each maximum of the pdf. Higher
values of delta reduce the number of maxima. We are setting
δ = 1.0 and scaling real numbers ρ(t) ∈ [1, 1000] in this
work. The IFT algorithm maximizes f(πt) such that the op-
timum paths form an optimum-path forest — a predecessor
map P with no cycles that assigns to each sample t /∈ R its
predecessor P (t) in the optimum path fromR or a marker nil
when t ∈ R.
Algorithm 1 – CLUSTERING BY OPTIMUM PATH FOREST

INPUT: Graph (N ,A) and function ρ.
OUTPUT: Label map L, path-value map V , forest P .
AUXILIARY: Priority queue Q, variables tmp and l ← 1.

1. For all s ∈ N , set P (s) ← nil, V (s) ← ρ(s) − δ, insert s in Q.
2. While Q is not empty, do
3. Remove from Q a sample s such that V (s) is maximum.
4. If P (s) = nil, then
5. Set L(s) ← l, l ← l + 1, and V (s) ← ρ(s).
6. For each t ∈ A(s) and V (t) < V (s), do
7. Compute tmp ← min{V (s), ρ(t)}.
8. If tmp > V (t) then
9. Set L(t) ← L(s), P (t) ← s, V (t) ← tmp.
10. Update position of t in Q.

429



Agorithm 1 identifies one root in each maximum of the pdf
(P (s) = nil in Line 4 implies s ∈ R), assigns to each root
a distinct label in Line 5, and computes the influence zone
(cluster) of each root as an optimum-path tree in P , such that
the nodes of the tree receive the same label of its root in a map
L (Line 9). It also outputs the optimum path-value map V and
forest P . It is more robust than the mean-shift [2] because it
does not depend on pdf gradients, uses a k-nn graph and as-
signs a single label per maximum, even when the maximum is
a connected component in (N ,A). It is more general because
the choice of f(〈t〉) can reduce irrelevant maxima (clusters).

3. EXTENSION TO LARGE DATASETS

Algorithm 1 takes O(k|N |+ |N | logN ), when Q is a binary
heap, and the estimation of the best k requires its computa-
tion several times. This can take several minutes on modern
PCs for |N | > 1000. The problem becomes unsurmountable
for 2D/3D images. In [1], the number of arcs are consider-
ably reduced by defining A as (s, t) ∈ A if ‖t − s‖ ≤ hi

and d(s, t) ≤ hf for image segmentation. The result, how-
ever, becomes a compromise between the choice of hi, whose
smaller values increase the number of irrelevant clusters, and
the choice of f(〈t〉), which can reduce this number. We are
avoiding any constraint in the image domain, by incremental
implementation of the method on k-nn graphs.
The extension is based on a random selection of a set

N ′ ⊂ N . Let V and L be the optimum maps from Algo-
rithm 1 computed on the best k-nn graph (N ′, A). A sample
t ∈ N\N ′ can be classified in one of the clusters by identi-
fying which root would offer it an optimum path as though it
were part of the forest. By considering the k-nearest neigh-
bors of t inN ′, we can use Equation 1 to compute ρ(t), eval-
uate the optimum paths πs · 〈s, t〉, and select the one that sat-
isfies

V (t) = max
∀(s,t)∈A

{min{V (s), ρ(t)}} (6)

Let the node s∗ ∈ N ′ be the one that satisfies Equation 6. The
classification simply assigns L(s∗) as the cluster of t.

4. APPLICATION TO GM/WM CLASSIFICATION

An MR-T1 image of the brain is a pair (N , I), where N is
the voxel set and I(t) is the voxel intensity. The problem
consists of finding two clusters (c = 2), GM and WM. The
subgraph (N ′,A) is created by sampling 0.02% of the voxels
from N , such that 0.01% of these voxels have values below
the mean brightness inside the brain and 0.01% have values
above it. This allows a fair amount of samples from both GM
and WM. The feature vector �v(t) consists of the value I(t)
and the values of its six closest neighbors in the image do-
main. When the neighbor is out of the brain, we repeat I(t)
in the vector. The best value of k is found within [1, kmax].

We set kmax = 50 due to the scale problem created by inho-
mogeneity and partial volume. The method usually finds two
clusters in this range, but it is possible to appear more than
two. In such a case, we force two clusters by assigning a GM
label to those with mean brightness below the mean intensity
in the brain and a WM label otherwise. Equation 6 is then
evaluated to classify the remaining voxels t ∈ N\N ′.

5. EVALUATION

We selected 8 phantom images with 181 × 217 × 181 voxels
from the Brainweb database 1, with noise from 3%, 5%, 7%,
and 9%, and inhomogeneity 20% and 40%, respectively. The
ground-truth image is available and the similarity between
each result and ground-truth was computed using the Dice
metric. We executed the method 10 times for each phantom
using different randomly selected sets N ′ and computed the
mean and standard deviation of the Dice similarities. We have
also performed the same experiment for the first 8 real images
(with 9-bit intensity values) from the IBSR dataset 2.
Table 1 presents the Dice similarities for the phantom im-

ages. These results are good and equivalent to those obtained
by recent approaches [14]. In the case of real images (Ta-
ble 2), our method obtained similarities 0.90 for GM and 0.86
for WM on average, against 0.80 for GM and 0.88 for WM
reported in [14]. This difference in favor of our approach for
GM classification is a relevant result for medical studies.
We have also measured the computational time for unsu-

pervised learning (OPF clustering including the best k esti-
mation) and classification. The longest execution time was
84 seconds on a 3GHz Pentium IV PC. Given that the method
proposed in [14] used a 2.8GHz Pentium IV PC, our method
is about 30 times faster than that approach.

Phantom Dice simil. for GM Dice simil. for WM
Dataset mean std. dev. mean std. dev.

1(3%,20%) 95.15% 0.17 93.43% 0.19
2(5%,20%) 95.10% 0.17 93.40% 0.20
3(7%,20%) 94.36% 1.03 92.55% 0.93
4(9%,20%) 94.06% 0.27 91.93% 0.54
5(3%,40%) 90.90% 1.28 88.30% 0.64
6(5%,40%) 91.23% 1.25 88.19% 0.67
7(7%,40%) 91.10% 0.72 87.77% 0.81
8(9%,40%) 90.66% 1.21 87.03% 0.73

Table 1. Results with phantoms: mean and standard deviation
of the Dice similarities for GM and WM.

The inhomogeneity seems to be the greatest challenge. It
is not difficult to find different regions in the brain where GM
and WM have similar intensities (Figure 2a). The errors were
concentrated on the boundary between GM and WM, being

1URL: http://www.bic.mni.mcgill.ca/brainweb
2URL: www.cma.mgh.harvard.edu/ibsr
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IBSR Dice simil. for GM Dice simil. for WM
Dataset mean std. dev. mean std. dev.
1 92.22% 0.87 84.98% 2.03
2 90.99% 2.93 86.55% 2.93
3 93.86% 0.14 86.07% 0.85
4 88.19% 5.97 85.99% 3.31
5 90.20% 1.73 84.59% 1.40
6 85.02% 4.21 83.00% 3.32
7 91.22% 3.35 87.39% 2.79
8 88.46% 4.39 86.05% 3.41

Table 2. Results with real images: mean and standard devia-
tion of the Dice similarities for GM and WM.

clearly more sensitive to the inhomogeneity variation than to
the noise variation (Figure 2b).

(a) (b)

Fig. 2. (a) The markers show WM and GM voxels with the
same intensity 1642. (b) The errors (white overlay) are con-
centrated on the boundary between GM and WM.

It also is interesting to point that our method did not im-
prove accuracy significantlty by increasing the sampling rate
from 0.02% to 0.12%. Further improvements should be done
by choice of better feature vectors and inhomogeneity correc-
tion.

6. CONCLUSION

A very efficient extension of the OPF clustering algorithm [1]
was proposed to large datasets and validated for GM/WM
classification. The experiments involved phantom and real
images of the brain. The classification results were good and
similar to those reported by recent approaches [14]. However,
the proposed method is about 30 times faster, do not rely on
templates, and is significantly more accurate for GM classifi-
cation in real images.
Our future goals will be to improve feature selection and

to evaluate possible variants of the method, which may in-
crease accuracy with minimum user intervention.
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